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Abstract

Inflation is shown to be a natural consequence of quantum geometry, a canonical quantization
of gravity. An inflaton is not required, but can be coupled resulting in large initial values. The
mechanism is a modified density a=2 which results from quantum geometry.



Quantum geometry (loop quantum gravity) is a canonical quantization of gravity based on
Ashtekar’s variables. In contrast to the old Wheeler-DeWitt quantization it has a mathemati-
cally well-defined structure and predicts that the geometry of space and time is discrete.

One example, the spatial volume spectrum, is in the isotropic case of loop quantum cosmology

Vignioy = 67283/ (In] = Dinl(In] + 1)
where n € Z is an integer label of the eigenvalues and Ip is the Planck length.

That also time is discrete can be seen from the evolution equation for the wave function
sn(@) (replacing ¥(a, ¢) of the Wheeler-DeWitt quantization) which is a difference equation:

Vinst) = Vijnra-1)$n+a(®) = 2(Vypy = Vijy_1)sa(9)
+(V%|n_4| - V%|n_4|_1)5’n—4(¢5) = _%ﬁllaﬂfb(n)sn(@

where k = 87 is the gravitational constant and H,(n) the matter Hamiltonian for a field ¢.
Instead of the usual internal time a we have the discrete time n whose norm is the eigenvalue
of the operator 64%/1%. At large volume (large n) the Wheeler-DeWitt equation

a3 (47! 50 (@0(a,6) ) = —Pll@)¥(a, o

is recovered (in this ordering) as a continuum approximation.
At small volume the discreteness is essential and leads to a removal of the classical singularity
at a = 0 as well as to a modified cosmological evolution.
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The Wheeler-DeWitt equation quantizes the
H? = (a/a)* = 2ka™*

3
with the matter Hamiltonian Hy(a), e.g. for a scalar ¢ (not nec-
essarily an inflaton) with momentum py. It turns out that the , which is
responsible for the , becomes discrete and modified at small @ by quantum

geometry effects.
One obtains an effective density which equals

for large a, but is bounded and becomes, e.g.,
0.8 |
dj(a) = F(3135) %0 i o < 5Rj os |
where 7 € %N labels a quantization ambiguity. 04|
The effective density increases with a until a? ~ on |
l pJ where the classical behavior is approached '
(see Fig. 1). Thus, quantum geometry yields the s
effective Friedmann equation n
H2 — ((L/(L)g — %H‘,a_3( dj (a) ) Figurc 1: The cffective density d; (in Planck units; n =

6a2/12) for two valucs of j: discrete cigenvalucs of the
opecrator {(+ and x), the continuum approximation d;(e),

which we will Stlldy Nnow. the small-a approximations and the
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From quantum geometry we derived the effective Friedmann equation

H? = (a/a)* = %fﬁ:a*(%dj(a)p(i +a’V(8))

where the effective density d;(a) is increasing for small . In standard, potential-driven inflation
one has to arrange the evolution of the scalar in such a way that the

over the kinetic term resulting in a right hand side of the Friedmann equation which does not
decrease with a. This implies an accelerated expansion.

In our effective Friedmann equation, on the other

hand, both the kinetic term and the potential term
increase with a if a is small enough. Then, even for
a vanishing potential we have the super-inflation-
ary expansion (Fig. 2)

2

= (tg — t)30+w)  if a’ < %l%j

Li=] ]

a(t) o« (tg —t)”

with w = —4 at very small @ where d;(a)  a'? is
increasing. For larger a, d;(a) grows less strongly
with a such that w decreases until the maximum

of d;(a) is reached. At this point, inflation stops
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Figurc 2: Solutions ¢(f) (in Planck units) to the cffective
Fricdmann cquation with vanishing potcntial and a

and the universe exits gracefully into a standard phase.

, both with j = 100.
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To know the amount of inflation we have to find out when inflation starts. However, this
will be inside the Planck regime where we can no longer trust the effective equation for a(t).

While the increasing behavior of the density d;{a) is
true for all small @ down to @ = 0, it is not obvious from
present techniques in which sense this would correspond
to inflation. Rather than being described by a time evo-
lution equation for a(t), the universe evolves quantum
mechanically, i.e. by the difference equation for our wave
function s,(¢). If the quantum evolution does corre-
spond to inflation for all small values of a, as the density
suggests, the number of e-foldings is certainly sufficient
since a(ty)/a(t;) would be arbitrarily large thanks to an
arbitrarily small initial a(t;). In fact, the wave function
shows the characteristic de Sitter behavior at all small a
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Figurc 3: Solution s,, to the discrete time cvolu-
tion cquation (j = 200; ncgative n corrcspond to
timc before the classical singularity which is ab-
sent in the quantum description).

(n = 6a*/13 < 400 in Fig. 3), but the Planck regime has to be better understood.

Quantum geometry predicts new qualitative features in the cosmological context. Quanti-
tatively, however, they are affected by quantization ambiguities like 7. Also the exponent [ in
the effective density d;(a) o a' for small a is not unique, which affects the equation of state
parameter w at early stages. [t will, however, always be positive which implies inflation; in
most cases it is even larger, [ > 3, which means super-inflation.
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This scenario can be combined with standard inflation: the field ¢ will increase during the
phase of the modified density. Thus, if we choose it to be the inflaton, it will acquire a large
initial value for a second phase of potential-driven inflation.

One can choose the parameter 7 for one matter component so large that the corresponding
density d;(a) is still growing at present values of a. While this is less natural, it leads to
“phantom matter” with equation of state parameter w < —1 which could explain the small
value of today’s cosmological constant. In this case, the effective Friedmann equation is

H” o (a/+/51p) (v/5lp) ™0 < (\/jlp) % < 0™

which is very small since we need a very large j > a2/13. In particular, the effective cosmological
constant A = H? would be time dependent via the scale factor a.
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